
11/3/2003 1

An Overview of BlueGene/L
and

A Short Tutorial on BGLSim

Bronis R. de Supinski
October 30, 2003

UCRL-PRES-200704

Note: This presentation borrows heavily from
presentations prepared by several others

11/3/2003 2

BlueGene/L is an architecture optimized for
cost, performance and scalability

Partnership between IBM and DOE/NNSA, LLNL lead lab
Address a limited but large set of applications

Low power, low cost, high performance: 180-360 Tflops
New generation of embedded processors
Large on chip DRAM
High speed, low latency, low power serial links
Simplified OS

Attacks the distance to memory problem
Low latency memory
High bandwidth memory

Significant savings in facilities cost
Scalable to petaFLOP/s systems

UCRL-PRES-147124

11/3/2003 3

This artist concept for 360 Tflops BlueGene/L
illustrates its remarkably compact footprint

2,500 ft2 footprint includes 400 TB of disk storage

11/3/2003 4

LLNL will support a wide array
of application teams on BlueGene/L

Currently planned LLNL earliest adopter applications
GP
DD3d
ALE3D
Miranda
Raptor

Purple benchmark codes
ASCI Alliance Centers
LBNL, ANL, others?

11/3/2003 5

BlueGene/L is stimulating the development
of a scalable storage area network for LLNL’s
Open Computing Facility

WAN
other

Archive

VIS

BGL
Compute
Nodes
(CN)

65,536

BGL
I/O

Nodes
(ION)
1,024

Gi
ga

bi
t E

th
er

ne
t F

ed
er

at
ed

 S
wi

tc
h

2,0
48

 p
or

ts

Front End
Nodes
(FEN)

Service
Node
(SN)

Control Management
Network

1024

8

8

8

512

128

128

240

OST
CWFS

1000BaseT (1 GbE)

11/3/2003 6

The high-level of integration results in a
compact footprint

Compute Chip

2 processors
2.8/5.6 GF/s

4 MiB* eDRAM

System

64 cabinets
(32x32x64)

180/360 TF/s
16 TiB*
~1 MW

2500 sq.ft.

Building
BlueGene/L

~11mm

(compare this with a 1988
Cray YMP/8 at 2.7 GF/s)

* http://physics.nist.gov/cuu/Units/binary.html

Compute Card

FRU 25mmx32mm
2 compute chips

(2x1x1)
2.8/5.6 GF/s

256 MiB* DDR
15 W

Node Card

32 compute chips
16 compute cards

(4x4x2)
90/180 GF/s
8 GiB* DDR

Midplane

SU (scalable unit)
16 node boards

(8x8x8)
1.4/2.9 TF/s

128 GiB* DDR
7-10 kW

Cabinet

32 node boards
(8x8x16)

2.9/5.7 TF/s
256 GiB* DDR

15-20 kW

11/3/2003 7

030 130 230 330 430 530 630

031

032

033

730

131 231 331 431 531 631 731

132 232 332 432 532 632 732

133 233 333 433 533 633 733

020 120 220 320 420 520 620

021

022

023

720

121 221 321 421 521 621 721

122 222 322 422 522 622 722

123 223 323 423 523 623 723

010 110 210 310 410 510 610

011

012

013

710

111 211 311 411 511 611 711

112 212 312 412 512 612 712

113 213 313 413 513 613 713

000 100 200 300 400 500 600

001

002

003

700

101 201 301 401 501 601 701

102 202 302 402 502 602 702

103 203 303 403 503 603 703

A midplane contains 512 nodes (8x8x8,
2.9TF/s) and is the scalable unit, either
connected or isolated from neighbors

2 midplanes
per cabinet

X

Z

Y

11/3/2003 8

Each ~15W BlueGene/L compute node is
composed of a single ASIC and 9 SDRAM-
DDR memory chips – that’s it!

The BlueGene/L compute ASIC uses
IBM CMOS CU-11 0.13µm technology.
In this diagram, the gray blocks are
standard System-On-A-Chip offerings
from IBM’s ASIC library. The white
blocks require a new design effort,

while the green blocks are
developed from existing designs.

All this on a ~11mmx11mm Si die.

The BlueGene/L compute ASIC uses
IBM CMOS CU-11 0.13µm technology.
In this diagram, the gray blocksgray blocks are
standard System-On-A-Chip offerings
from IBM’s ASIC library. The white white
blocksblocks require a new design effort,

while the green blocksgreen blocks are
developed from existing designs.

All this on a ~11mmx11mm Si die.

PLB (4:1)

“Double FPU”

Ethernet
Gbit

JTAG
Access

144 bit wide
DDR
256MB

JTAG

Gbit
Ethernet

440 CPU

440 CPU
I/O proc

Prefetch
Buffers

Prefetch
Buffers

Multiported
SRAM
Buffer

Link buffers
and
Routing

DDR
Control
with ECC

Shared
L3 directory
for EDRAM

Includes ECC

4MB
EDRAM

L3 Cache

Multibank

l

6 outgoing and 6
incoming torus links at
1.4 Gb/s link
+ 2.8 Gb/s tree

256

256

1024+
144 ECC256

128

128

32k/32k L1

32k/32k L1

2.7GB/s

22GB/s

15-way fully-associative
prefetching caches

11GB/s

“Double FPU”

5.5GB/s

5.5 GB/s

256

128

11/3/2003 9

PPC440 processor core

Target 700 MHz
2-way superscalar (2
instructions per cycle)

1.4 Ginstrs per processor
2.8 Ginstrs per node
184 Tinstrs overall
≤6 ops per proc per cycle
(e.g., 2 FP mac, 1 int mac)

3 execution pipelines:
Load/store

Up to 3 loads pending
Simple integer
Complex integer, branch

32 32-bit integer registers

“Double hummer” FPU added
Dynamic/static branch prediction

2-bit branch history
1-cycle branch latency

Dedicated HW loop counter and
special loop branch instruction

11/3/2003 10

Floating point
“Double Hummer”

2 64-bit FPUs per core (so 4 per node)
32 64-bit register pairs service the 2 FPUs
An instruction can drive either FPU or both (SIMD)

A SIMD Multiply-Accumulate does 4 64-bit Flops
Also has complex, other intra-pair instructions

2 FMAs × 1 core × 64k nodes @ 700 MHz = 184 Tflops peak
Using 2nd core’s DH-FPU gives 367 Tflops peak
Using single-op instrs (non-MAC) reduces by 1/2
To approach peak, avoid reading off-chip memory

Load BW from L3: 64 bits every .25 cycles
Load BW from memory: 64 bits every 1.4 cycles

Quadword load fills a register pair (also useful for comm)

11/3/2003 11

Architectural features of BlueGene/L
promote application efficiency and scaling –
nodes connected by 5 networks

3D torus for point-to point messages
6 bi-directional nearest-neighbor links
4.2GB/s target aggregate bandwidth
Support for broadcast operations

Binary combining tree
Target latency of about 2 µs
Supports 32 bit integer and logical ops
Software extensions for floating point

JTAG for diagnostics and IPL
Allows access to the processor’s registers
Connected to the 100 Mbit Ethernet port

Gigabit ethernet to I/O nodes
Tree connects I/O node to 64 Compute nodes

Low-latency global barrier network

(wrap links
not shown)

Compute Nodes

Gb Ethernet
I/O Node

100Mb Ethernet

11/3/2003 12

BlueGene/L software overview

Usual mode: 1 MPI process per node
2nd core does communication

Options for computing on both CPUs
Virtual node mode?
Co_start pthread-like interface

High Performance Kernel (HPK)
provides basic OS functionality
No paging, static linking only

Most Linux services (e.g., files,
sockets, IP, NFS) via function shipping
Linux and user-space code do not
directly access hardware
Supporting C, C++, F95
UPC, Co-array Fortran, Charm++?
I/O nodes also serve as portal to
outside

64 compute nodes 1 I/O node

Function
shipping

MPI, ESSL, ...

11/3/2003 13

† target specifications * comm. co-processor mode / symmetric mode

Characteristics of BlueGene/L

0.06
0.13
5-10
280
130
250
512

23,000
~2,000

64
197

12/2004
~250
4.5

12,000

50

100

ASCI Purple

0.0080.030.040.04Bi-Section Bandwidth (B:F)
0.750.130.0850.042Interconnect Bandwidth (B:F)

76–204.525MPI Latency (µs)
70–330140Memory Latency (cycles)

360160198Memory Bandwidth (TB/s)
0.25–0.516816Memory/Node (GiB)

2.864.07.324.0Peak Speed/Node (Gflop/s)
1516,0009202,000Power Dissipation/Node (W)

7005001,000375Clock Frequency (MHz)
28416CPUs per Node

65,5366404,096512No. of Nodes
~12/20042/2002~9/20029/2000Installation Date
<< 100~350~200~100Cost (M$)

1.2103.81.0Total Power (MW)
2,50034,00020,00010,000Footprint (ft.2)

16–3210228Total Memory (Tbytes)

180 / 360*402012.3Machine Peak Speed (Tflop/s)

BlueGene/L†Earth
SimulatorASCI QASCI

White

11/3/2003 14

BlueGene/L’s characteristics suggest new
metrics to emphasize its dramatic departure
from recent supercomputers

† target specifications

>> 2,000~100~100~100Speed-Cost Effectiveness
(GF/s/M$)

3004.07.912Speed-Power Effectiveness
(GF/s/kW)

1600131613Speed-Space Effectiveness
(GF/s/m2)

1403.1178.6Memory-Space Effectiveness
(GiB/m2)

BlueGene/L†Earth
SimulatorASCI QASCI White

11/3/2003 15

Blue Gene/L system software architecture
provides a full end-to-end solution

Functional
Ethernet

Functional
Ethernet

I/O Node 0

Linux

ciod

C-Node 0

CNK

I/O Node 1023

Linux

ciod

C-Node 0

CNK

C-Node 63

CNK

C-Node 63

CNK

Control
Ethernet
Control
Ethernet

IDo chip

Scheduler

Console

Service
Node

Service
Node

MMCS

JTAG

torus

tree

DB2

Front-end
Nodes

Pset 1023

Pset 0

I2C

File
Servers

11/3/2003 16

The Blue Gene/L simulation environment
models the complete BlueGene/L system
software architecture

EthernetEthernet

BGLsim

Linux

ciod

BGLsim

CNK

BGLsim

Linux

ciod

BGLsim

CNK

BGLsim

CNK

BGLsim

CNK

Control
Ethernet
Control
Ethernet

IDo chip
simulator

Service
Node

MMCS

Scheduler

cioman

File
Servers

CommFabric
(torus, tree, GI,
ethernet,JTAG)

CommFabric
(torus, tree, GI,
ethernet,JTAG)

Ethernet
gateway

Tap
daemon

11/3/2003 17

Overview of BGLSim

Architectural simulator of a single BG/L node
Consumes PPC440 binaries
One cycle per instruction
Statistics as instruction histograms, traces; timing model
Runs on Linux/x86 workstations

BG/L specific features:
Supports 2 PPC 440 cores per chip, 440GP instruction set
Hummer2 (Oedipus ISA) floating point
Architecture accurate caches: L1, L2, L3
EMAC4, MAL (1Gb/s Ethernet)
BG/L interrupt controller (BIC)
Torus, tree devices and other networks

11/3/2003 18

Invoking BGLSim in single chip mode

mambo [options]
Verbose mode (-v): print every instruction executed
Verbose interrupts (-z): print every interrupt
Single/dual core mode (-S,-D)
Cache model (-L:123,12,13,None)
PseudoUART console (-x): interactive console under Linux
Interactive mode (-i): CTRL-C suspends the simulator

Peek, poke memory, registers, TLBs
Preload ELF images (-e)

Significantly faster than loading them through JTAG
Torus/tree cheat (-t)

Preconfigure torus and tree

11/3/2003 19

Multichip simulation architecture:
BGLMachine

Machine description file:
Racks, midplanes, node cards, compute & I/O cards, wiring
Described in XML format

Used by the real control system and the simulator
In real hardware:

Backed by MMCS database description of same items
Generated from the database

In simulator:
Generated when simulation starts
Library accessible to simulation components, esp.
CommFabric and simboot

11/3/2003 20

Multichip simulation architecture: simboot

“Creates” and IPLs a simulated system
Creates BGLMachine file according to arguments
Saves BGLMachine to a file (bglsim.xml)
Creates and saves an MPI (LAM) schema (simboot.schema)

What programs to run where
LLNL ported simboot to use Quadrics (and other) MPI libraries

Starts the simulator processes
IPLs (boots) the simulators

“cheating” – (simulators wake up with pre-loaded images)
Alternative boot: simulated control system

Allows simulated architectures not supported in real hardware
e.g. 4 compute nodes in a 2x2 torus with 2 I/O nodes
Hard-coded configurations
Command line arguments to create arbitrary* simulations

11/3/2003 21

Multichip aimulation architecture:
CommFabric

“Implements” BGLMachine in simulator
Simulates cabling and network chips of real hardware

All 5 BG/L networks
CommFabric is a library linked by all simulation
components
MPI messages

Torus: packets routed according to hint bits
Tree: packets routed according to class routes
Ethernet: packets routed through Ethernet gateway
GI: state changes routed through nodes

11/3/2003 22

IDo chip simulator, MMCS simulator

IDo sim: IDo chip & JTAG functional simulator
Read, write SRAM
Read, write DCRs
Apply reset on/off to individual cores

MMCS_sim: midplane management control system
Talks to IDO simulator instead of JTAG network

MMCS+IDo can boot a simulation
simboot starts simulation with all BGLsims running “empty”
MMCS loads boot images and resets nodes through IDO sim

11/3/2003 23

TapDaemon and the ethernet gateway

bglsim routes external ethernet packets (not 10.0.0.0) to TapDaemon through
CommFabric library and Ethernet gateway

Internal Ethernet packets routed directly between mambos through CommFabric
TapDaemon

Part of simulation: listens for connections on a well known port
Hostname and port number defined when installing simulator

Requires root privileges because reads/writes raw ethernet
Requires recompilation of the host Linux kernel with TUN/TAP module enabled
Log in /var/log/tapserver

Only one TapDaemon shared by all simulations
As part of initialization, simboot contacts the tapserver, obtains a new simulation
number (called netId) and forks a new tap daemon for the simulation (new
functionality)

Ethernet gateway is the interface between TapDaemon and simulation
Runs with user privileges
Reads and writes CommFabric packets (has MPI rank)
Reads and writes from/to socket with forked TapDaemon

11/3/2003 24

Routing and NFS in BGLsim involves both
simulated and real ethernet traffic

EthernetEthernet

BGLsim

Linux

ciod

BGLsim

BLRTS

BGLsim

Linux

ciod

BGLsim

BLRTS

BGLsim

BLRTS

BGLsim

BLRTS

Cioman

Ciorun

File
Servers

CommFabric
library

CommFabric
library

Ethernet
gateway

Tap
daemon

phenylalanine
9.2.140.201

9.2.140.204 (eth0)

bg95

10.4.1.1 (tap4)

bg95

10.4.1.15

10.4.1.16

10.4.1.1

Real IP network
Virtual IP network

11/3/2003 25

BGLSim uses cioman and ciorun, the
actual job starters fo BlueGene/L

cioman and ciorun run outside the simulation
Connect to I/O nodes using CIO protocol

over real+simulated ethernet
Once simulation is booted, anybody can connect to it

bglsim.xml describes IP addresses of I/O nodes
cioman is interactive, allows user process debugging
ciorun is similar to mpirun, and has a –np argument

11/3/2003 26

Accessing BGLsim on LLNL’s
ASCI Linux Cluster

The value of experience:
Always start with a fresh xterm and ssh to alc
Use the makefile structure (“include Make.rules”)

Provides consistent mechanism
Supports future upgrades

Break simulation into pieces (don’t use “make test”)
If things go wrong, start over with a fresh xterm

Start with the basic examples
cp -r /BlueLight/current/examples .

Include multichip/Make.rules in your makefiles…

11/3/2003 27

Trying BGLsim examples

Single node examples show how to build and run:
On a bare-bones compute node: hello_standalone
On a compute node: hello_blrts
On an I/O node: hello_linux
We’ll focus on multichip examples

Multichip examples cover running on multiple nodes
Simple hello world from multiple compute nodes: hello
File I/O from compute nodes: fileio
Low-level communication interface tests: torus, torus2,
vtorus, commworld, matmult
A variety of MPI tests
We’ll cover hello and the MPI test simple

11/3/2003 28

Running the hello example

Set the SIMBOOT_MACHINES environment variable
setenv SIMBOOT_MACHINES /etc/bgl.hosts
Can really use just about any text file on alc…

Test the X connection to alc – run “xclock”
mkdir /bgl/<userid> (directory to run executables from)
Build and run the hello example

cd examples/multichip/hello
more Makefile (note that APP=hello.rts)
make hello.rts
make start (starts the simulator, including several xterms)
make run (runs the simulated hello world program)

Stop the simulator
squeue (Locate your simboot jobid <jobid>)
scancel <jobid>

11/3/2003 29

Running the simple example

Build the simple example
cd ../mpi/simple
more Makefile (note that APP=simple.rts)
make hello.rts

Modify Makefile not to use simulator xterms – add:
XTERMS=

Run the simulator and the example
make start (starts the simulator, without xterms)
make run (runs the simulated MPI ring program)

Stop the simulator
squeue (Locate your simboot jobid <jobid>)
scancel <jobid>

11/3/2003 30

Modifying your code to run in BGLsim

Add “include Make.rules” to your makefile
Add definition of APP to your makefile
Look in /BlueLight/current/bglsys/Make.rules

Definitions of default flags for cross-compilation
Definitions of compilers and tools for cross compiling

Gnu currently available: CC_RTS, F77_RTS, CXX_RTS
XL compilers coming: CC_XL, F77_XL, CXX_XL

May also support the remote XL compilers…
XLF is required for F90 codes…

11/3/2003 31

This work was performed under the auspices of the U.S. Department of Energy by University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California
nor any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial products, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement
purposes.

11/3/2003 32

3D Torus Network

32 nodes × 32 nodes × 64 nodes
Target 2 bits/cycle/link/direction

175 MB/s per link per direction
2.1 GB/s aggregate in & out node
67.2 TB/s aggregate over all nodes
358 GB/s Bisection BW
Node input BW/flops = .75B/flop (using 1 DHFPU)

Both adaptive and deterministic deadlock-free routing
Packets 32-256 bytes (31-byte overhead, 12% of 256B)
Runs at full bandwidth (in absence of contention)
Simulations of MPI_Alltoall show 87% efficiency

11/3/2003 33

Combining Tree Network
For broadcast, reduce, allreduce
Any node can be root
256-byte packets, pipelined
Link BW target 4 bits/cycle = 350 MB/s
32-bit integer arithmetic and logical ops
Target 1.5 microsec total latency

100Mb Ethernet

Compute Nodes
(64 per I/O node) Gb Ethernet

I/O Node

Floating point reductions must be done as integers
e.g., for sum, first find max exponent
or do exact arithmetic with very long ints
for “small” reductions, torus will be faster

Also used for point-to-point to/from I/O node
There is another tree for global interrupts & barriers

